15 research outputs found

    Distal radius fractures in children: substantial difference in stability between buckle and greenstick fractures

    Get PDF
    Background and purpose Numerous follow-up visits for wrist fractures in children are performed without therapeutic consequences. We investigated the degree to which the follow-up visits reveal complications and lead to change in management. The stability of greenstick and buckle fractures of the distal radius was assessed by comparing the lateral angulation radiographically

    Serum tau fragments as predictors of death or poor neurological outcome after out-of-hospital cardiac arrest

    No full text
    Background: Anoxic brain injury is the primary cause of death after resuscitation from out-of-hospital cardiac arrest (OHCA) and prognostication is challenging. The aim of this study was to evaluate the potential of two fragments of tau as serum biomarkers for neurological outcome. Methods: Single-center sub-study of 171 patients included in the Target Temperature Management (TTM) Trial randomly assigned to TTM at 33 °C or TTM at 36 °C for 24 h after OHCA. Fragments (tau-A and tau-C) of the neuronal protein tau were measured in serum 24, 48 and 72 h after OHCA. The primary endpoint was neurological outcome. Results: Median (quartile 1–quartile 3) tau-A (ng/ml) values were 58 (43–71) versus 51 (43–67), 72 (57–84) versus 71 (59–82) and 76 (61–92) versus 75 (64–89) for good versus unfavourable outcome at 24, 48 and 72 h, respectively (pgroup = 0.95). Median tau C (ng/ml) values were 38 (29–50) versus 36 (29–49), 49 (38–58) versus 48 (33–59) and 48 (39–59) versus 48 (36–62) (pgroup = 0.95). Tau-A and tau-C did not predict neurological outcome (area under the receiver-operating curve at 48 h; tau-A: 0.51 and tau-C: 0.51). Conclusions: Serum levels of tau fragments were unable to predict neurological outcome after OHCA

    Brain injury markers in blood predict signs of hypoxic ischaemic encephalopathy on head computed tomography after cardiac arrest

    Get PDF
    Background/Aim: Signs of hypoxic ischaemic encephalopathy (HIE) on head computed tomography (CT) predicts poor neurological outcome after cardiac arrest. We explore whether levels of brain injury markers in blood could predict the likelihood of HIE on CT. Methods: Retrospective analysis of CT performed at 24–168 h post cardiac arrest on clinical indication within the Target Temperature Management after out-of-hospital cardiac arrest-trial. Biomarkers prospectively collected at 24- and 48 h post-arrest were analysed for neuron specific enolase (NSE), neurofilament light (NFL), total-tau and glial fibrillary acidic protein (GFAP). HIE was assessed through visual evaluation and quantitative grey-white-matter ratio (GWR) was retrospectively calculated on Swedish subjects with original images available. Results: In total, 95 patients were included. The performance to predict HIE on CT (performed at IQR 73–116 h) at 48 h was similar for all biomarkers, assessed as area under the receiving operating characteristic curve (AUC) NSE 0.82 (0.71–0.94), NFL 0.79 (0.67–0.91), total-tau 0.84 (0.74–0.95), GFAP 0.79 (0.67–0.90). The predictive performance of biomarker levels at 24 h was AUC 0.72–0.81. At 48 h biomarker levels below Youden Index accurately excluded HIE in 77.3–91.7% (negative predictive value) and levels above Youden Index correctly predicted HIE in 73.3–83.7% (positive predictive value). NSE cut-off at 48 h was 48 ng/ml. Elevated biomarker levels irrespective of timepoint significantly correlated with lower GWR. Conclusion: Biomarker levels can assess the likelihood of a patient presenting with HIE on CT and could be used to select suitable patients for CT-examination during neurological prognostication in unconscious cardiac arrest patients

    Serum Neurofilament Light Chain for Prognosis of Outcome after Cardiac Arrest

    No full text
    Importance: Prognostication of neurologic outcome after cardiac arrest is an important but challenging aspect of patient therapy management in critical care units. Objective: To determine whether serum neurofilament light chain (NFL) levels can be used for prognostication of neurologic outcome after cardiac arrest. Design, Setting and Participants: Prospective clinical biobank study of data from the randomized Target Temperature Management After Cardiac Arrest trial, an international, multicenter study with 29 participating sites. Patients were included between November 11, 2010, and January 10, 2013. Serum NFL levels were analyzed between August 1 and August 23, 2017, after trial completion. A total of 782 unconscious patients with out-of-hospital cardiac arrest of presumed cardiac origin were eligible. Exposures: Serum NFL concentrations analyzed at 24, 48, and 72 hours after cardiac arrest with an ultrasensitive immunoassay. Main Outcomes and Measures: Poor neurologic outcome at 6-month follow-up, defined according to the Cerebral Performance Category Scale as cerebral performance category 3 (severe cerebral disability), 4 (coma), or 5 (brain death). Results: Of 782 eligible patients, 65 patients (8.3%) were excluded because of issues with aliquoting, missing sampling, missing outcome, or transport problems of samples. Of the 717 patients included (91.7%), 580 were men (80.9%) and median (interquartile range [IQR]) age was 65 (56-73) years. A total of 360 patients (50.2%) had poor neurologic outcome at 6 months. Median (IQR) serum NFL level was significantly increased in the patients with poor outcome vs good outcome at 24 hours (1426 [299-3577] vs 37 [20-70] pg/mL), 48 hours (3240 [623-8271] vs 46 [26-101] pg/mL), and 72 hours (3344 [845-7838] vs 54 [30-122] pg/mL) (P <.001 at all time points), with high overall performance (area under the curve, 0.94-0.95) and high sensitivities at high specificities (eg, 69% sensitivity with 98% specificity at 24 hours). Serum NFL levels had significantly greater performance than the other biochemical serum markers (ie, tau, neuron-specific enolase, and S100). At comparable specificities, serum NFL levels had greater sensitivity for poor outcome compared with routine electroencephalogram, somatosensory-evoked potentials, head computed tomography, and both pupillary and corneal reflexes (ranging from 29.2% to 49.0% greater for serum NFL level). Conclusions and Relevance: Findings from this study suggest that the serum NFL level is a highly predictive marker of long-term poor neurologic outcome at 24 hours after cardiac arrest and may be a useful complement to currently available neurologic prognostication methods
    corecore